
OSL in 3ds Max 2019
Zap Andersson 2018-03-16

Introduction
3ds Max 2019 introduces the Open Shading Language (OSL).

OSL is an open source shading language, and is fairly simple to understand. Writing a shader in OSL is

orders of magnitude less effort than developing the equivalent functionality as a 3ds max C++ map.

Simply put, type some OSL code in an editor, and you are done. More details about this in the

developer documentation.

It is visible to the user in the form of the OSL Map. It is an execution environment for OSL shaders

inside of 3ds max, and is implemented so it can work like any regular built-in 3ds max map.

This means it out of the box works in any renderer supporting the regular 3ds max shading API

(Scanline, vRay, Corona etc.). It also means it works outside of renderers, anywhere in 3ds max

where a regular map is requested, such as in the Displacement modifier, etc.

But it can also work with renderers that support OSL natively, such as Arnold. In that case, the

execution environment inside the OSL Map is not used, instead, the OSL source code, the parameter

values and shader bindings are sent to the renderer, which executes the OSL code itself. More and

more renderers supporting OSL natively are appearing every day.

OSL uses “Just-In-Time” compilation and optimization of entire shade trees at once - as long as all the

shaders in the shade tree are OSL shaders. You can mix OSL shaders and regular shaders, but the

optimizations will suffer

A few Limitations of OSL in 3ds max
The OSL Map has a few limitations in this first version.

Only supports Maps, not Materials
A shader written in OSL can have multiple outputs returning different data types like colors, floating

point values, integers, strings, and so on. This is all supported.

However, OSL also supports a special type known as a “closure”. One can think of closures as being

“materials”. This is not supported by the current version. In practice, this means, the OSL Map can

only be used to build procedural textures (Maps), and not to build Materials.

Therefore, the recommended workflow is to build your procedural texture maps in OSL, but connect

the outputs to a standardized, well defined, renderer-independent material, such as the 3ds max

Physical Material.

If an OSL shader you find online doesn’t appear to do anything, or doesn’t appear to have any

outputs, it might be an OSL “material”.

Only supports plain data types
The OSL Map in max only support the plain data types: Colors, vectors, floats, integers and strings. It

does not support arrays or structs as inputs.

This is rarely a problem in practice, because very few OSL shaders actually use arrays or structs as

inputs. Note that the limitation only applies to parameters –arrays and structs still work fine inside

the OSL code. More information in the developer documentation.

No #include statements
OSL code can in 3ds Max not contain the #include statement. If your OSL code contains…

#include <stdosl.h>

…is not needed and can be removed, the file stdosl.h is implicitly included by the compiler.

A note on terminology
Sadly, computer graphics terminology is not always precise, and words like “shader”, “map”,

“texture”, “procedural” and “material” mean different things when used in different context, in

different applications, or even for different renderers.

In OSL, everything is called a “shader”. It is, after all, a “shading” language. What the shader does,

depends on its return type; things that returns a closure would act as what 3ds max calls a

“material”, and things that do not, would act as what 3ds max calls a “map”.

Since we do not support closures yet (see Only supports Maps, not Materials), it will, in max, always

show up as a “map”, and hence only exists under the “Maps” category. But since this help text largely

speaks about OSL, the term “shader” will be used when referring to things in the OSL context, even

though it does behave like a “map” to max.

A note on maps with multiple outputs
The original 3ds max rendering API did not support multiple outputs. This is an extension that was

introduced later. For this reason, most 3ds max materials and maps do not understand connecting to

a map with multiple outputs. To solve this, the Output Selector map was introduced, which is a go-

between that is automatically inserted between something that has multiple outputs, and something

that does not understand multiple outputs.

In 3ds max 2019 this “in between map” is automatically hidden, so in Slate Material Editor it looks

like a normal connection (except the wire is blue instead of red). The option can be turned on or off

by choosing Preferences from the Options menu in Slate, and toggling the Hide Single Map Output

Selectors option:

It is important to note that this hiding is purely cosmetic and only applies to Slate. The Compact

material will still display the Output Selector, it will be seen by MaxScript, and so on.

Output Selector Hidden Output Selector Visible

Use cases for the OSL Map
There are two fundamental “use cases” for the OSL Map. In a nutshell they look like this:

Use case #1: Normal “User” workflow
You pick the OSL category in the Material/Map browser, pick some map, drop it in the Slate material

editor, and edit its parameters. Nothing is effectively any different from any other 3ds max map

plugin; it shows up in the browser, you use it, you hit render or use ActiveShade in a supported

renderer – done.

All the OSL maps that populate the material browser in this way come from 3ds max plugin folders.

More details on exactly how OSL files are automatically loaded, displayed or categorized can be

found in Adding more OSL Shaders and in the developer documentation.

It is important to note, that in this workflow, all shader code is hosted in files under the plugin

folders, and in general behave like any other plugin. If an updated version is dropped in the

appropriate folder, the new version will be used when rendering, just like updating any other plugin.

Max ships with roughly 100 OSL shaders, which are documented in the section Quick tour of the

preinstalled OSL shaders.

Use case #2: The tinkerer and shader developer workflow
The OSL Map comes in another flavor, a bare, empty “unpopulated” map, with editing features. You

find this among the General maps as the OSL Map. You drop it in slate, use it, but this is where it

becomes exciting:

As before, you drag the OSL Map into slate, but it isn’t really doing much (except a piece of demo

code). You can pick the “. . . .” button up top to load in OSL shaders from disk that doesn’t necessarily

live in the Plugins folder hierarchy, but anywhere. The OSL Map will dynamically morph to the new

parameters, spawn the additional inputs and outputs needed, and start rendering based on the

loaded OSL file.

In this workflow, the OSL code is actually loaded into the OSL Map. It only uses the file when loading,

from that point on, the code lives as a string parameter inside the OSL Map.

And now comes the fun part: Clicking the Edit icon pops up the OSL source editor. It’s a nice, simple,

dockable syntax-coloring text editor, in which OSL code can be edited live. By hitting the Compile

Shader button (with a Ctrl-S shortcut while the cursor is in the OSL editor text box) the shader will

update to whatever the latest code says - even (with a renderer that supports it) while rendering in

ActiveShade!

Edited files can be saved with the Save OSL File button, but since the code lives inside the OSL Map,

they can just as well be stored in max scenes, or even dropped in material libraries. No external

dependencies on any files exist anymore, it is completely self-contained. A scene sent to a render

farm across the world will never be missing a shader – they are in the scene.

This now turns the OSL Map into a complete shader development environment. You can work

interactively with the code (multiple editors can be popped up at once).

When finished with your nice new shader, you can, if you want, save the OSL code to disk.

Maybe, when you are “done”, even save it in … one of the Plugins/OSL folders… which means, next

time 3ds max is launched, the shader will show up automatically in the Material/Map browser with

all the others!

Yes, you can use the “bare” OSL Map as an editing and development environment for shaders you

later deploy as “plugins”, by putting them under the Plugins folder hierarchy.

Workflow #3 – there are no workflows
Sounds very Zen, but we lied. There’s not really two workflows. There are only two mental states.

The OSL Map that runs the shaders preloaded from the map browser, and the OSL Map found in the

General section are one and the same. As a matter of fact, dragging in something from the OSL

section differs only in one aspect: the OSL Map comes in in the “linked” mode by default, and its file

is preloaded to the appropriate OSL file. That’s it!

The chain icons state indicates the “linked” mode.

When this mode is on, shaders are read from disk,

from the file named on the file button.

When it is off, shader code is stored embedded

inside the OSL Map itself.

And the best bit is – you can switch.

If you want to change an aspect of one of the

preloaded shaders – you can! Just “unlink” it, and

edit it to your hearts content. You will only be editing a copy that is living in your scene, never the

original file on disk. All other shaders that are still in the “linked” state, will keep the plugin-like

behavior. Those that are “unlinked” will allow local editing within that OSL Map.

If you attempt to “re-link” a modified map, it will revert back to the version in the file, and your edits

will be discarded.

This makes simple one-off modifications, or even simple experimentation very easy. Tinker with

something, if you break it, “link” it again, and it goes back to the way it was.

Adding more OSL Shaders
OSL shaders that automatically show up in the Map Browser are loaded from two kinds of places:

 The main “system” OSL folder located under the 3ds Max root folder. This contains all OSL

files shipped with 3ds Max – do not change these files or put any new files in this folder!

 Subdirectories named OSL to each of the paths listed under Customize -> Configure System

Paths -> 3rd Party Plug-Ins

So to add your own OSL shaders, there are two options:

 Simply put them in the <3dsmax>\Plugins\OSL folder

 Create a new folder on your computer, and add that folder as a 3rd Party Plug-In path.

Create a subdirectory under it named OSL and put the files in there.

In both cases, if you put files in further subdirectories under the OSL directory, this will show up as

categories in the Map Browser.

ADN (Autodesk Developers Network) runs an OSL GitHub page at...

 https://github.com/ADN-DevTech/3dsMax-OSL-Shaders

…where you can find more OSL shaders to download.

https://github.com/ADN-DevTech/3dsMax-OSL-Shaders

Quick tour of the preinstalled OSL shaders

About the shaders
The OSL shaders shipping with 3ds max 2019 come in a main category with several subcategories.

The subcategories contain mostly smaller helper shaders who will be only briefly documented,

whereas the main category contains the slightly more complex shaders that are documented in

slightly more detail.

When exploring the OSL maps, remember that the top of the UI contains a small explanatory help

text, and that each parameter can have a tooltip, and that this document only explains the maps

shipping with 3ds max 2019, but you can easily use third party ones, or even write your own….

A special note on “computed defaults” and UVW inputs
OSL has a very special feature called a “computed default”. That means that a map can have an input

which if it is not connected anywhere, can contain some specially computed value as a useful default.

You recognize a computed default by the fact that the input has a map input, but there are no value

spinners in the UI for the value (because, if it is not connected, the computed value is used).

Many maps use this, for example, all of the included OSL textures come with an UVW input. In

contrast to the classic max maps, this allows connecting the output of any computation1 to drive the

lookup position of the texture.

But for the map to do something meaningful when the UVW input is not connected, computed

defaults are used. Most 2D textures use a computed default mapping to 3ds max map channel 1,

and most 3D textures has a computed default of the shaded points object space coordinate. That

way, maps give a reasonable default texturing when used directly. If one wants to use a different

UVW map channel, or transform the UVW coordinates somehow, one can use maps from the UVW

category (explained in more detail below) to accomplish that.

Note however that exactly what computed default is used is completely up to the OSL code itself. A

few maps does “special” things purely for demonstration purposes, for example the Blackbody

shader uses the U coordinate of map channel 1 to make an example gradient across the surface, as

does the Wavelength shader. This also means that OSL maps downloaded from the net may literally

do “anything” for a computed default.

Just keep an eye out for things that only has a Map input and no spinners, and know that it’s

probably intended for you to supply a meaningful input there.

1 Anything that returns a three-component value such as a vector, point, or even a color.

General Category

The maps in the general category serve a few different purposes. First, some of the larger, more

complete and immediately useful ones, such as Bitmap Lookup, Composite, Rivets or

RandomizedBitmap are here.

But it also contains a few maps that can be used as basis and examples for home grown OSL shader

experiments (such as Checker or MAHexagon).

BitmapLookup
This shader is the generic way to look up a pixel in a bitmap in OSL.

Unlike the classic max Bitmap, here you can supply any computation to feed the UV coordinate for

what pixel to look up, giving ultimate freedom.

Note: Texture lookups in OSL are done via OpenImageIO and hence supports only the image types

OpenImageIO supports.

Note: Avoid using non OSL shaders in an OSL shade tree, it is much less efficient to use the regular

max Bitmap shader than this one when working with OSL.

These are the parameters of the shader:

Parameter Description

UV Coordinate The input coordinate for which to look up a pixel.
Defaults to UV values from 3ds max map channel 1.
To use another map channel, connect the UVW Channel map. Or connect
any map or combination of maps computing a vector.

Scale A scale factor, for convenience. Larger values makes the texture larger.

File Name The name of the file to display

Wrap Mode How to treat lookups outside the 0-1 UV range. Available values are:

 “default” – whatever is the renderers default

 “black” – returns black for outside points

 “clamp” – repeats the edge pixels for outside points

 “periodic” – repeats the texture in a cyclic fashion

 “mirror” – repeats the texture in a mirrored fashion

AutoGamma Attempts to automatically compute the gamma setting for the texture

Manual Gamma When AutoGamma is off, the manual gamma to use

The shader has following outputs:

Output Description

Col (RGB) The output as a color

R / G / B / A The individual R, G or B and Alpha outputs of the color.

Luminance The weighted luminance of the color. Useful as the “black and white”
output that is visually similar to the original image.

Average The average value of the RGB color. Also “black and white” but does not
discriminate between colors.

BlackBody
Computes the color emitted by a radiative black body for a given range of Kelvin temperatures.

These are the parameters of the shader:

Parameter Description

Input The input value. Connect the parameter driving the temperature here.
The default, when not connected, is a demo gradient along the U axis of
map channel 1

Min The Kelvin temperature for when Input = 0.0

Max The Kelvin temperature for when Input = 1.0

Normalize When off, the shader computes both a color and an intensity (which varies
quite strongly with temperature).
When on, it keeps the intensity constant and only computes the color.

Intensity Intensity multiplier of the output

It has a single color output named Col.

Candy
Computes random spheres at random positions in space (which on a 2d surface looks like random

circles). Technically, space is divided in a grid with a randomly sized and positioned sphere in each.

These are the parameters of the shader:

Parameter Description

UVW The UVW coordinate. The default, when not connected, is object space.

Scale A simple scale factor of the effect. Sphere (circle) centers are (on average)
this far apart. Technically, the size of the grid boxes.

Radius The size of each sphere (circle) in relation to its grid box. Beware that
values larger than 1.0 may reveal the grid box edge.

RandomOverlap When off, a slightly faster algorithm is used, but that always causes the
spheres to appear to have the same “order”, which can, if significant
overlap is used, look like the spheres are sorted in a given order.
When on, the sphere order is randomized.

BumpAmount Scales the strength of the Bump output

BumpShape Tweaks the “curve shape” of the Bump output. When above 1.0 makes the
bumps to appear more “pointy”, when below 1.0 they appear more
“round”.

The shader has five outputs:

Output Description

Col A random color per sphere, or black when outside the spheres

Fac Circle presence factor. Is 0.0 when not on a sphere, 1.0 when on a sphere.

Bump A bump output, suitable to connect to the Bump or Displacement input of
e.g. a Physical Material.

Dist The normalized distance from the center of the sphere (0.0) to the edge
(1.0)

Rnd A random number per sphere (from 0.0 to 1.0)

Checker
A checkerboard pattern, as a programming example of the simplest possible useful shader, and a

good start point for your own experiments in shader writing.

Note that this shader is technically 3D, and doesn’t actually do 2d squares but 3d cubes. But when

fed only 2d coordinates (which is the default) it will appear as a regular checker shader.

These are the parameters of the shader:

Parameter Description

UVW The UVW coordinate. When not connected, defaults to map channel 1

Scale A scale factor for the squares / cubes

Color 1 The first color

Color 2 The second color

Composite
A simple compositing shader that does an “over” compositing operation between two layers, i.e.

map a top layer over a bottom layer based on an alpha (opacity) channel.

To composite multiple layers, these can simply be cascaded, one feeding into the layers of the other.

These are the parameters of the shader:

Parameter Description

Top layer RGB The color channel of the top layer

Top layer Alpha The alpha channel of the top layer

Bottom layer RGB The color channel of the bottom layer

Bottom layer Alpha The alpha channel of the bottom layer

Premultiplied Alpha If the top layer should be interpreted as having premultiplied (aka as
“associated”) alpha channel or not.

Clamp Result Clamps the result to the 0.0 to 1.0 range

The shader has two outputs:

Output Description

Out The output color

Alpha The output alpha

Digits
A shader simulating a 7-segment display. Can be used for actual rendering, but may actually be more

useful for debugging things in Slate.

These are the parameters of the shader:

Parameter Description

UVW The UVW coordinate. When not connected, defaults to map channel 1.
The shader keeps the digits within the unit square in UV space.

Number An input for the number to be displayed

Digits A number (from 2 to 8) of for the minimum number of digits to display.
The shader will automatically add digits when necessary to display the
number or support the requested number of decimals.

Decimals The number of decimals

Scale A simple scale factor of the digits.

BGColor The background color

OnColor The color for when a segment is on (lit)

OffColor The color for when a segment is off (dark)

UseOffColor If this is off, the OffColor will not be used and the BGColor is used instead

The shader has three outputs:

Output Description

Col The color output

Fac A segment opacity output. Returns 0.0 for the background and 1.0 for a
digit segment. If “UseOffColor” is off, only the lit segments return 1.0

Number A pass-through output for the number.
Useful for debugging or making the data flow clearer in a shading graph.

Lift/Gamma/Gain
A simple color shader to change brightness/contrast/gamma of a color. Note that a more complex

color tweaking map can be found in the Colors category

These are the parameters of the shader:

Parameter Description

Input The color to modify

Lift Adds a “lift” by adding this value to the color

Gamma Tweaks the color curve by applying a gamma (power) to the color

Gain An intensity multiplier to change the brightness of the color

Mandelbrot
Computes a Mandelbrot/Julia fractal in up to 4 dimensions.

The fractal is computed by iterating the function…

 Z = Z2 + C

…until it reaches infinity.

Most people think of the Mandelbrot equation as having a two-dimensional input by feeding

different initial C values in as a complex number for UV point, and initializing Z to zero.

Conversely, the Julia set is created by picking a fixed C value, and initializing the Z as a complex

number for each UV point.

This shader combines the two, allowing you to both initialize C and Z at the same time, allowing you

to make things like three- or four-dimensional Mandelbrot sets, or other fancy things.

These are the parameters of the shader:

Parameter Description

UVW The U and V coordinate initializes the real and imaginary components of
the C constant, and the W coordinate initializes the real component of the
Z constant. This means, for a regular 2D input coordinate (which is the
default if nothing is connected), a regular Mandelbrot set is rendered, but
for a 3D coordinate, the Mandelbrot set is extended into three dimensions.

Center The center point, to align the Mandelbrot set better with the unit UV
square.

Scale A simple scale factor

Zimaginary Since the W coordinate of the UVW input only set the real component of Z,
here you can feed in the imaginary component.

Iterations How many iterations to try before “giving up” to find infinity

ColorScale Tweaks the output color range

ColorPower Tweaks the output color range curve shape

The shader has two outputs:

Output Description

Col The color output, using a built-in color gradient based on a rainbow

Fac A float output proportional to the number of iterations run. Can be used to
drive some other type of effect rather than the default “rainbow”

Noise
This shader works identically to Noise (3D) with the exception that it only has a single output, and is

therefore slightly more efficient for just applying noise effects to a single value. See Noise (3D) for

parameter documentation.

Noise (3D)
A noise shader that works identically to Noise except it can return three noise values at the same

time, either independently or as a 3D vector (or color).

The classic max “Noise” can add complexity by adding up multiple noises over different “octaves”,

where the effect of each “octave” is doubled in frequency and halved in intensity, and then applies a

min/max cutoff to the result.

This noise shader works a bit differently. It still sums up multiple levels of noise over what is called

“octaves”, but in actuality, the amount of frequency change per iteration is defined by the

Lacunarity, and the intensity change by the Gain. The defaults (2.0 and 0.5 respectively) yields a

behavior similar to classic noise, but you have full control over these settings and can set them to any

other values, to sculpt the behavior with more detail.

Also, the min/max from the classic noise is mirrored here by the “Step Function”, but the big

difference is that it is applied per iteration of noise, rather on the final result.

OSL noise has six different types

 perlin – classic Perlin noise, returning values in the -1 to 1 range.

 uperlin – same as Perlin but unsigned, returning values in the 0 to 1 range.

 cell – A noise that returns a fixed value for each unit cube of space

 hash – A noise that returns a fixed random output for a fixed input, but with no continuity,

i.e. if the input changes even slightly, a completely different output value is returned.

 simplex – Simplex noise

 gabor – Gabor noise. Not that Gabor noise has some additional parameters and for that

reason there is a separate Noise (Gabor) shader.

For more technical details of the various noise types, refer to the OSL language specification.

These are the parameters of the shader:

Parameter Description

UVW The UVW coordinate. The default, when not connected, is object space.

Scale A simple scale factor of the noise.

Type A choice of the type of noise.

Octaves How many “octaves” of noise. Effectively how many times noise is iterated
to add complexity.

Lacunarity How the frequency changes for each iteration. The default 2.0 will create
noise that changes spatially twice as fast for each iteration.

Gain How the intensity changes for each iteration. The default 0.5 will halve the
intensity for each iteration.

Step Function When on, uses the step function. Note that it is applied per iteration,
unlike the min/max of the classic max Noise shader.

Low Step The low point of the step function.

High Step The high point of the step function.

Normalize If on, normalizes the shader output to the sum of all the iterations.
Basically, keeps the output constant regardless of you adding/removing an
iteration.

Amplitude Just a scale factor for the output

Phase OSL noise functions are actually four dimensional internally. This is simply
the fourth coordinate (the other three coming from the UVW input), which
allows to for example evolve the noise over time, or similar.

The shader has four outputs:

Output Description

Out The output as a 3D vector (which can just as well be used as a color)

X / Y / Z The individual X, Y or Z outputs of the vector, i.e. the three noise values
independently.

Noise (Gabor)
A specific map for Gabor noise, exposing some of its specific parameters.

Gabor noise is slower to compute than regular noise, but filters better, and have some additional

parameters. If none of the additional things are necessary, one can just as well use the “gabor” mode

of the above Noise or Noise (3D) maps.

It is a band-limited, filtered, sparse convolution noise based on the Gabor impulse function (see

Lagae et al., SIGGRAPH 2012). The OSL Gabor noise is designed to have somewhat similar frequency

content and range as Perlin noise. It is significantly more expensive than Perlin noise, but its

advantage is that it correctly filters automatically based on the input derivatives.

These are the parameters of the shader:

Parameter Description

UVW The UVW coordinate. The default, when not connected, is object space.

Scale A simple scale factor of the noise.

Bandwidth The bandwidth of the noise

Impulses The number of impulses per cell

Unsigned When on, returns values in the range of 0 to 1.
When off, returns values in the range -1 to 1

Filter When on, uses the filtering features. Should probably always be on.

Anisotropic Isotropic (the default): Gabor noise will be isotropic. The direction
vector is not used in this mode.

 Anisotropic along: the Gabor noise will be anisotropic with the 3D
frequency given by the direction vector (which defaults to (1,0,0)).

 Anisotropic Radial: a hybrid mode will be used which is anisotropic
along the direction vector, but radially isotropic perpendicular to
that vector.

Direction The direction vector for anisotropy

The shader has four outputs:

Output Description

Col (RGB) The output as a color

R / G / B The individual R, G or B outputs of the color, i.e. the three noise values
independently.

RandomizeBitmaps
Randomizes up to ten bitmaps with random position, scale, rotation, color shift, opacity, density, etc.

Conceptually, the maps starts by putting one copy of the bitmap in each unit square of texture space,

after which it applies a set of random operations to it, making the outcome seem random. In the

default values, only the position is randomized. If even that is turned to zero, the result will actually

be a completely regular grid. But the map allows full control of how to randomize every aspect of

each instance of the bitmap(s), making the fact the “starting point” is a regular grid impossible to

detect.

However, for this to work correctly, a shader will have to look at the bitmap to be put in the currently

shaded unit square of UV space, and also each of the neighboring unit squares around it, in case a

bitmap from that square had been pushed into this square due to position or scale transformations.

For this reason the Overlap parameter exists. The default of 1 causes each lookup to actually to

check each of the nearest unit squares in each direction, checking in total a 3 x 3 grid (9 squares) with

the “current” square in the middle. Sometimes, if very large position offsets, or very large scales are

used, this may not be enough, causing the appearance of cut-off edges of bitmaps that are moved far

or scaled up a lot. This can be solved by increasing the Overlap parameter to 2, but please keep in

mind this entails looking up neighbors 2 steps in every direction, causing a 5x5 grid (25 squares) to be

looked up. For a value of 3, a 7x7 grid (49 squares) are looked up, etc.

Obviously, this decreases performance a lot for each step up in the Overlap parameters value. Be

cautious when increasing this!

A special note on the Probability parameter, which has three values. The first is simply an overall

probability which will cause a instance of a bitmap to either appear or not. However, randomness in

nature tends to have a “clumping” behavior, so the 2nd value is a “clumped probability” which applies

a large-scale noise function on the probability. The 3rd value is the scale (in UVW space) of said noise.

These are the parameters of the shader:

Parameter Description

UVW The UVW coordinate for the map. Defaults to UV values from 3ds max map
channel 1. To use another map channel, connect the UVW Channel map.
Or connect any map or combination of maps computing a vector.

Input The background onto which the randomized bitmap(s) is composited. This
allows cascading several Randomized Bitmap together for extreme
complexity.

InputAlpha The background alpha value

Number of Files How many of the below file names are used

File name N Up to 10 files (File name 0 to File name 9) with different images

Seed The random seed

Probability The vector defining the probability. See notes above

 X is the overall “uniform” probability

 Y is the more naturally looking “clumped” probability

 Z is the scale of the “clumping”

PosRandom A vector defining the position randomness.
Only the X and Y values are used.
For large offset, one may need to increase Overlap – see above.

ScaleMIn / ScaleMax A vector defining the minimum and maximum scale. Only X and Y values
are used. See UniformScale for details.
For large scales, where images bleed strongly into neighboring grid cells,
one may need to increase Overlap – see above.

UniformScale When on, the scale of each instance of a bitmap is a random value
reaching from ScaleMin to ScaleMax, but the X and Y scale
components always change in sync with each other, to maintain
the aspect ratio of the image.

 When off, the X and Y scale are randomized independently, which
will then potentially alter the aspect ratio of the bitmap.

PixelScale When this is zero, the entire width of the image will (before any
random scale) be considered the 1.0 scale and match one unit grid
cell in UVW space, regardless of the pixel resolution of the image.

 When this is nonzero, that many pixels of the image is considered
the 1.0 scale. This allows randomization of many differently sized
images. Note that this can easily cause large images to be scaled so
big they easily bleed into adjacent grid cells, needing a larger
Overlap – see above.

RotMin / RotMax The minimum and maximum random rotation (in degrees).
Each bitmap will get a random rotation between these two values.

HSVMin / HSVMax The minimum and maximum HSV (Hue, Saturation and Value) tweaks as a
vector, where

 X is the amount of hue shift (default 0.0)

 Y is the multiplier for saturation (default 1.0)

 Z is the multiplier for the value (default 1.0).

Each bitmap will get a random HSV shift between these two values, each
component randomized independently.

AlphaMin / Max The minimum and maximum alpha (opacity). Each bitmap will get random
alpha between these two values.

The shader has following outputs:

Output Description

Out The output as a color

Alpha The Alpha output.

Rivets
Also known as “the Steam-Punk shader”. Adds a set of rivets and an edge around each unit square in

UV space (after applying the Scale parameter), with a set of randomizations applied to them for a

more “distressed” look. This shader might be comically domain specific, but think about it as an

example of just one of the infinite number of things that are possible using OSL shaders…

Note: Above image also uses the UVW Row Offset map to give the offset appearance.

These are the parameters of the shader:

Parameter Description

UVW The UVW coordinate for the map. Defaults to UV values from 3ds max map
channel 1. To use another map channel, connect the UVW Channel map.
Or connect any map or combination of maps computing a vector.

Scale A simple scale factor to the UVWs. The default 0.5 will show 4 plate “tiles”
on a 1x1 square of UV space on the object.

U_Rivets / V_Rivets How many rivets are along the U and V axis of a unit square of UV space
(after scaling). Technically, the shader divides each “plate” (unit square of
UV space) into this many sub-tiles, and adds a rivet in the center of each of
the tiles that touch the edge.

RivetRadius The radius of a rivet (in relation to the size of each “rivet tile” as defined by
the U_Rivets and V_Rivets parameters)

Dirt The additional radius distance to add dirt around the rivet. If RivetRadius is
0.5 and Dirt is 0.1, the actual radius of the dirty area is 0.6

Seed The random seed

PlateColor The color of the plates

RivetColor The color of the rivets

DirtColor The color of the dirt around the rivets. Fades into the plate color.

SpaceColor The color of the space between the plates

HoleColor The color of the holes. Only seen if RivetProbability is less than 1.0

RivetCenter A vector defining where, in each “rivet tile” each rivet is located. The Z
coordinate is not used.

RivetRandom A vector defining random position offset for each rivet within each “rivet
tile”. The Z coordinate is not used.

RivetProbability Amount of rivets that are still attached. Missing rivets are shown as a circle
of the DirtColor with a smaller circle of HoleColor inside it.

HoleRadius The radius of the hole

HoleEdge The width of the hole “edge”. This is only affects the Bump output to give
a beveled edge appearance on the hole.

BumpAmount The strength of the bump effect on the rivets themselves. Only affects the
Bump output.

BumpShape The shape of the bump effect. A value larger than 1.0 makes a more
“pointy” looking bump, a value lower than 1.0 a “rounder” looking bump.
Only affects the Bump output.

PlateGap The width of the gap between the plates, in UV units. The gap shows the
SpaceColor

PlateEdge The width of the plate edge, which only affects the Bump output to give a
beveled edge appearance.

PlateWobble A vector defining how much the plates “wobble” and bend. The X and Y
coordinates warps the actual UV of each plate, and the Z affects the Bump
output making the plate appear to buckle and bend. Note that while this m
y seem like a regular UV distortion, it is a different distortion for each
plate, making then appear warped in individual distinct ways.

WobbleScale PlateWobble is driven by a noise function. This vector scales that noise
function with relation to UV space.

Rivets follow plate
wobble

 When off, the position of rivets are computed completely
independently from any distortion of the plate geometry.

 When on, any computation for rivet position is done within the
distorted coordinate space of the plate, making rows of rivet to
appear to follow bends in the plate.

The shader has following outputs:

Output Description

Col The output color

RivetFac 1.0 when on a rivet, 0.0 when not.

HoleFac 1.0 when on a hole, 0.0 when not.

PlateFac 1.0 when on a plate, 0.0 when in a gap.

Dist Radial distance on a rivet

Bump For connecting to the Bump input on a material. All bump effects appear in
this output.

TileIdx Index of a “rivet tile”. Use this to drive an indexed based randomizer to
make variations from rivet to rivet.

PlateIdx Index of each “plate”. Use this to drive an indexed based randomizer to
make variations from plate to plate.

UberBitmap
UberBitmap is an all-in-one bitmap shader.

The generic “Bitmap Lookup” defaults to map channel 1. To use another map one must connect the

UVW Channel map to its input. If one wants to tweak the coordinates in any complex ways, one may

also need to use an UVW Transform map. Which makes you end up with this almost every time:

Since this use case of looking up a bitmap based on a map channel with some transformation applied

is so common, the UberBitmap exists to combine the chain of UVW Channel, UVW Transform and

Bitmap Lookup into a single shader. It is what is most similar to the classic max Bitmap shader.

These are the parameters of the shader, which is a superset of the three maps combined:

Parameter Description

Map Channel Which 3ds max map channel to use.

Scale A uniform size multiplier (bigger values = bigger texture)

Tile A per axis size divider (bigger values = smaller texture for that axis)

Offset The offset of the coordinate

Rotate How many degrees to rotate around the rotation axis

Rotation Center The coordinate (in UVW space) of the center of rotation

Rotation Axis A direction (in UVW space) around which rotation is performed

File Name The name of the file to display

Wrap Mode How to treat lookups outside the 0-1 UV range. Available values are:

 “default” – whatever is the renderers default

 “black” – returns black for outside points

 “clamp” – repeats the edge pixels for outside points

 “periodic” – repeats the texture in a cyclic fashion

 “mirror” – repeats the texture in a mirrored fashion
AutoGamma Attempts to automatically compute the gamma setting for the texture

Manual Gamma When AutoGamma is off, the manual gamma to use

The shader has following outputs:

Output Description

Col (RGB) The output as a color

R / G / B / A The individual R, G or B and Alpha outputs of the color.

Luminance The weighted luminance of the color. Useful as the “black and white”
output that is visually similar to the original image.

Average The average value of the RGB color. Also “black and white” but does not
discriminate between colors.

WaveLength
Computes an RGB color for a given wavelength

These are the parameters of the shader:

Parameter Description

Input The input value that drives the color

Min The wavelength (nm) for when Input is 0.0

Max The wavelength (nm) for when Input is 1.0

Subcategories
Shaders in the subcategories are simpler shaders that will not be documented on a per-parameter

level. They should in theory be either self-explanatory or have enough tooltips to make their use self-

evident.

Math/Color
Contains mathematical operations and helper functions relating to colors and color processing.

Map Function

Add (color) Add two colors, A and B, with an optional scale for each color.

Clamp (color) Restrains the Input color between the Min and Max values

Components (color) Break a color into individual R, G and B components or assemble a
color from R, G and B values.

Divide (color) Divide color A with color B, with optional 0-to-1 clamping.

Interpolate (color) Interpolates between the Min and Max colors, depending on the
value of the Input color. Note that interpolation is done per R, G and B
component.

Invert (color) Returns the photographic negative of the color (i.e. 1.0-Input)

Max (color) Returns the highest R, G or B component from the input A and B
colors.

Min (color) Returns the lowest R, G or B component from the input A and B
colors.

Multiply (color) Multiply the R, G and B components of the A and B colors.

Random by Index (color) Interpolates randomly between the Min and Max colors based on an
integer Index and a random Seed. Used to generate e.g. random color
variations per object or similar, by feeding in different per-object
integer value.

SmoothStep (color) For each R, G and B component, if Input is below Min, the result is
0.0, when above Max the result is 1.0, and in between the two, a
smooth curve function causing a visually pleasing ramp between 0.0
and 1.0

Subtract (color) Subtract the color B from the color A, with an optional scale value for
each.

Tweak (color) Tweak the Input color, by mapping the input range ranging from
InputMin to InputMax to the output range ranging from OutputMin

to OutputMax. Between these operations the colors HSV value can be
modified by adding the H value to the colors hue, and multiplying the
S and V values with the saturation and value of the color respectively.
The result can be optionally clamped to the 0.0-1.0 range.

Math/Float
Contains mathematical operations and helper functions relating to floating point numbers. Note: All

trigonometric functions work in units of radians.

Map Function

Abs The absolute value (i.e. the value with any negative sign removed)

ACos The Arccosine (inverse Cosine) trigonometric function.

Add Adds A and B

ASin The Arcsine (inverse Sine) trigonometric function

ATan The Arctangent (inverse Tangent) trigonometric function

Clamp Clamps the Input value between the Min and Max values

Complement Returns the complement number (1-Input)

Cos Returns the Cosine of Input

Degrees-to-Radians Converts an Angle in degrees to radians.

Divide Divides A with B. Division by zero simply returns zero.

Exp The natural logarithm e raised to the power of X

Float-to-Int Convert a floating point value to an integer. The rounding can be done
by floor (nearest lower integer in the direction of negative infinity),
ceil (next higher integer in the direction of positive infinity), round
(standard rounding) or trunc (simply throwing away decimals)
operations.

Interpolate Interpolate between the Min and Max values based on the Input
value.

Log The natural logarithm of Input

LogX The logarithm of Input in an arbitrary Base

Maximum The highest number of A or B

Minimum The lowest number of A or B

Modulo The remainder (modulo) of dividing A with B

Multiply Multiplies A with B

Negate Returns the Input with the sign reversed (positive to negative or vice
versa)

Power Raise A to the power of B

Radians-to-Degrees Converts an Angle in radians to degrees.

Random by Index Returns a random value between Max and Min for each integer Index
and a random Seed. Useful for making per-object randomizations.

Range/Remapper Takes the Input value and remaps the range from Input Range Start
to Input Range End to the output range going from Output Range
Start to Output Range End, applying a curve (power function) in
between, where a Remapping Curve of 1.0 means a linear
transformation. The output value can be optionally Clamped to
Output Range, otherwise if the Input value strayed outside the input
range, this could cause the Out value to stray outside the output
range.

Reciprocal Return 1.0 divided by the Input

Sin Returns the Sine of Input

SmoothStep If the Input value is below Min, returns 0.0. If it is above Max, returns
1.0. In between these values, returns a smoothly interpolated visually
pleasing curve.

Square Root Returns the square root of Input

Subtract Subtracts B from A

Tan Returns the Tangent of Input

Math/Vector
Contains mathematical operations and helper functions relating to vectors, points or normals (all

three treated as a “vector” type)

Map Function

Add (vector) Add vectors A and B (with optional scaling)

Components (vector) Allow getting or setting individual X, Y or Z coordinates of a vector.

Cross Product (vector) Take the cross product of A and B. A cross product of two vectors is a
third vector perpendicular to both. If the incoming vectors are unit
length, so will the resulting vector be.

Distance (vector) Take the distance between A and B seen as points.

Dot Product (vector) Take the dot product of A and B. The dot product is the cosine of the
angle between the two vectors times the product of the length of
both, which means that if both vectors are unit length, it’s simply the
cosine of the angle between them.

Invert (vector) Inverts a vector by negating each of its components.

Length (vector) Computes the length of a vector

Max (vector) Returns the maximum of each of the X, Y and Z components of the
vectors A and B

Min (vector) Returns the minimum of each of the X, Y and Z components of the
vectors A and B

Multiply (vector) Multiplies A with B

Normalize (vector) Returns the normalized version of Input, i.e. the vector that has the
same direction, but re-scaled so it has the length 1.0, also known as
“unit length”.

Random by Index (vector) Returns a random vector between Max and Min for each integer
Index and a random Seed

Subtract (vector) Subtract vector B from A (with optional scaling)

Scene
Maps for getting data about the scene

Map Function

Frame Number Returns the current frame number with an optional Offset

Material ID Returns the Material ID of the current face (or the particle ID for
particles), either as a random color, or an integer Index.

Named Attribute Get any OSL named attribute. The available named attributes are
described below. For each of the output types there is a matching
“Default” input, which will be the output value if that attribute is
missing for some reason (or exists, but is the wrong type). The User
Defined Property checkbox simply prepends “usr_” to the attribute
being requested from OSL, so filling in “Foo” in Attribute with this
checked will actually ask OSL for the “usr_Foo” attribute.

Node Handle Returns the Node Handle of an Instance, which is a value suitable for
driving indexed randomizers with. Note However that node handles
might not be persistent across e.g. merge-ing or XRef-ing of scenes, or
even across certain complex scene edits.

Node Name/Hash Returns the name of the node, or perhaps more interesting, the Hash
of the name. This can also be used to drive indexed randomizer, but
this has the guarantee, that a given name will always return a given
Hash, so as long as the name is persistent, so is the hash.

Object ID Returns the number known as the “Object ID” in the object properties
dialog (technically, the GBufID).

Particle Age Returns the normalized particle age, 0.0 at birth and 1.0 at death of
the particle. For convenience a Scale can be applied to the value.

Time (seconds) Returns the scene time in seconds, with an optional Offset

Wire Color Returns the wireframe color of the object.

About Named Attributes

The Named Attribute shader can return any named attribute that the current OSL execution

environment exposes. However, it is important to understand which execution environment that is.

For example, when rendering inside of 3ds max’s Scanline renderer, or any other renderer supporting

the classic shader interface, it is 3ds max own built in execution environment being used, whereas

when rendering in e.g. the Arnold renderer, it is the Arnold execution environment being used.

This makes the list of attributes available renderer-dependent. There is a recommended list, but it

cannot be absolutely guaranteed that every renderer implementation in max follows the

recommended list.

For this reason, it is better to use the special maps for getting scene values, such as the “Node

Handle” map. In reality, it is simply getting a specially named attribute called “nodeHandle”, but the

advantage of using the specific Map rather than the general “Named Attribute” map, is that the

“Node Handle” map can in principle be updated in case a certain new renderer behaves differently

and names its attributes in a different manner, whereas using the “Named Attribute” map and typing

in “nodeHandle” in the Attribute parameter, will probably work… but might not.

User Defined Attributes

In a renderer with a compliant OSL execution environment, the Named Attribute can also return User

Defined attributes. These are values typed into the Object Properties dialog on the “User Defined”

tab. Simply typing a name/value pair like for example “Foo=13.0” will expose to OSL an attribute on

that object named “usr_Foo” with the floating point value 13.0.

To make this easier to use, one can simply type “Foo” in the Attribute parameter and check the User

Defined Property checkbox, which prepends the “usr_” prefix under the hood. Values of type

integer, string, float, or three comma separated floating point numbers (for colors or vectors) are

supported.

The type of the data is defined by the format of the value, i.e.

Type How it is written

Integer 13

Float 13.0

Color or Vector 1.0,0.5,0.1

String Anything else

Switchers
Maps that switch between / choose other maps due to various criteria like index numbers,

conditions, and similar.

Map Function

1-of-10 (color / float) A map each for float or color values. Has ten inputs, with an Input
index to use value that selects which of the 10 inputs are used, so
that input index 0 will return the value at Input 0 and so on.
If Start index is nonzero, that is the actual index that will return Input
0, e.g. for a Start Index of 10, it is the input index value of 10 that will
return the Input 0 value. This is how several switchers can be
cascaded together to return more than 10 values – plug one switcher
into the Outside of the other, utilizing the Start Index to change its
range.

When the Range: Number of inputs is zero, any input index outside
the 0-9 range (taking the Start Index offset into account) will return
the Outside value. However, when it is nonzero, only that many of the
inputs will be used, and an index higher than that will wrap around to
the first input again. So if it is set to 3, an input index that would have
normally mapped to Input 4, will instead wrap around to Input 0

1-of-5 (color / float) Works identically to the 1-or-10, except it has only 5 inputs, for
efficiency.

Compare Compares two numbers A and B and returns three different (color)
values depending on if A is greater than B, the numbers are “equal”
(within the Equality threshold) or B is greater than A.

Greather Than A simpler shader that simply returns two different (color) values
depending if A is greather than B or not.

UVW
Maps for processing texture-mapping coordinates

Map Function

Named Coord Space Converts the input (by default the shading point) from “common”
coordinates to the given named coordinate space. Available choices
are “world”, “object”, “screen”, “raster” and “NDC”.

UVW Channel Returns the UVW values from a 3ds max map channel. Note that
channel 0 is the vertex color channel.

UVW Environment Returns UVW coordinates suitable for environment mapping.
Supports standard “spherical” mapping, but also “mirrorball”
mappings, where the environment map is a picture of a mirror ball.
Only makes sense when used in the scene environment slot.

UVW Object Space Converts the input value (by default the shading point) to Object
Space. Effectively a shorthand for using the Named Coord Space
shader with “object” as the coordinate space.

UVW Row Offset Offsets rows of the UV space. Useful to make bricks and offset tile
patterns.
Takes the input UVW coordinates (by default map channel 0), applies
Scale and Tiling to it and divides the resulting UV values in RowCount
number of rows (each the hight of 1 in the V direction), offsetting
each row in the U direction by Offset plus RandomOffset

UVW Transform Takes the input UVW coordinate (by default map channel 0), and
applies a Scale and Tiling to it, where Scale is a uniform size multiplier
(bigger values = bigger texture) and Tile is a per-axis size divider
(bigger values = smaller texture for that axis), adds an Offset and then
rotates the UVW coordinate Rotate degrees around an axis centered
at Rotation Center and pointing in the direction of Rotation Axis in
UVW space.

Values
Maps that pass-through or expose plain values, for connecting shared values to other maps, so that a

given value only have to input in one place, but can be connected to multiple places.

Map Function

Color Returns a color value

File Name Returns a file name value, which entails there is a file selection button
to pick the file, and the picked file will be consider an asset of the
scene.

Float Returns a floating point value

Integer Returns an integer value

Numbered File Name Takes an input file name, and converts it to one with a given four-digit
frame number added before the dot of the extension. If Replace is on,
the 4 characters before the dot is replaced by the number (useful if
you picked file0000.exr already and want to replace that number). If it
is off, the number is simply inserted before the extension dot, making
the file name 4 characters longer.
If Do Preview is checked, the Preview output will contain the image.
This is purely a trick to make the image show up in the thumbnail of
the 3ds max SME editor, and not intended to be used for actual
rendering.

String Returns a string value

Vector Returns a vector (point, or normal) value

